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TERAHERTZ ELECTROMAGNETIC IMAGING OF DIELECTRIC
MATERIALS

Gabriella A. Pinter
Department of Mathematical Sciences

University of Wisconsin, Milwaukee

1 Introduction

Research efforts were directed towards the understanding of high frequency (gigahertz and
higher) ultrashort pulse propagation in dielectric materials for the purpose of extending
current imaging capabilities and the assessment of safety standards. We formulated a full-
wave variational Maxwell model that provides the theoretical and computational foundation
for this problem. The model can incorporate linear and nonlinear polarization dynamics, and
facilitates the comparison of the resulting phenomena. In particular, we were interested in
temporal transients, like the Brillouin precursors, and how they changed their characteristics
under different constitutive laws.

The results described first concern the theoretical foundations of this problem, and show

that under fairly general conditions the model permits a unique weak solution that depends
continuously on the input parameters.

An efficient numerical algorithm was developed for our extensive simulations and analysis
based on different versions of the presented model. This algorithm can be extended readily
to include the imaging problem, i.e., the identification of electromagnetic and geometric
properties of a hidden substance.

We also investigated the interaction of electromagnetic waves with the dynamics of poly-
meric/viscoelastic materials. As a first step, we developed a molecular based multiscale
model that correctly describes the characteristics (e.g., hysteresis) exhibited by these mate-

rials in dynamical extension and shear deformations. This model can then be coupled to the
electromagnetic phenomena to provide a complete description of the problem. This research
was joint work with H.T. Banks and N.G. Medhin from North Carolina State University.

2 Theoretical results

We consider a time-domain model for the propagation of high-intensity electromagnetic
waves (e.g., laser beams) in dielectric materials. This work is a continuation of the efforts in
the monograph [2], where the authors investigated a similar model using the full Maxwell's
equations together with linear constitutive relations in a variational approach for the prop-
agation of microwaves through dielectric layers. The variational approach facilitates the
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incorporation of antenna sources in the model and provides an approximate computation of
the electromagnetic transients like the Brillouin precursor. We extended the applicability of
the results in [2] in the following sense: the model in the monograph contains a linear consti-
tutive relationship describing material polarization in a convolution representation. Such a
formulation includes Debye and Lorentz polarization models and is adequate to describe the
interaction of microwaves with dielectric materials. However, the polarization mechanism
cannot be assumed to be linear in the case of very high intensity electromagnetic waves,
like lasers. Thus we developed theoretical results using a representation of the polarization
by a nonlinear convolution. In particular, we take a physical model similar to that in [2],
introduce a polarization law

P(t,z) = jg(t- s,z)(E(s,z) + f(E(s,z)))ds, (2.1)

and establish the well-posedness of the resulting system. This formulation can be interpreted
as a generalization of the Debye or Lorentz polarization models in the sense that the polar-
ization dynamics is driven by a nonlinear function of the electric field. We show the global
existence-uniqueness and continuous dependence on data of weak solutions under general
assumptions on the nonlinearity f. These conditions are satisfied by a number of locally
polynomial nonlinearities proposed in the nonlinear optics literature (e.g., see the "second
order" optical models involving cubic nonlinearities in [10, 11].) Based on these theoreti-
cal results, rigorous computational methods can be developed for the forward problem and
subsequently for the associated inverse problems. After a detailed description of the specific
problem studied we refer to [3, 7] for the technical details of the proofs.

We consider Maxwell's equations applied to a specific physical problem as depicted in
Figure 1. An infinite slab of material is interrogated by a normally incident polarized plane
wave windowed pulse originating at an antenna source z = 0 in free space Q0 = [0, z1]. The
slab of material in Q = [zI, z2] is assumed to be homogeneous in the directions orthogonal to
the direction z of propagation of the plane wave. Under these assumptions the strength of
the electric and magnetic fields in Q and Q0 can be represented by the scalar functions E(t, z)
and H(t, z), respectively. One can readily eliminate the magnetic field from the full Maxwell
equations to arrive at the strong formulation of the problem (for a detailed derivation see
[2])

poct + poIo(z)P + [zak - E" = -p 0J, 0 < z < z 2 , t > 0, (2.2)
10E OEJT -t _1Z= 0 t > 0, (2.3)

E(t, z2) =0 t > 0, (2.4)
E (0,z) D (zk(0, Z) = T()0 < Z < Z2, (2.5)

where P denotes the polarization and Ip is the indicator function

IQ(Z) {0 ifO< z <z2
1 if Z1 < Zz2 , '



x

E (t, z)

---
Zi Z2

Htz)

Figure 1: Geometry of the physical problem

where z, < 1 is the front boundary of the slab and z2 is the (sometimes unknown in in-
terrogation problems) back boundary (see Figure 1). We note that an absorbing boundary
condition is placed at z = 0 to prevent the reflection of waves. We assume that there
is a supraconductive backing on the slab at z = z2 and specify the boundary conditions
accordingly. Equation (2.2) can be given in the form

1_ o* . 1, , _ 1 .
f + -in(Z) P + 1-UE _ C2E"

C0  Co Co CO
where c = C0(1 + (c, - 1)In), and c2 =-o1. We denote -o-- by i,.

We assume that the frequency of the interrogating wave is so high that the dependence
of the polarization on the electric field can no longer be adequately described by a linear
constitutive law. Specifically, we consider a polarization mechanism that depends on the
strength of the electric field in the convolution in (2.1). Thus

P(t, z) = ] t(t - s, z)f(E(s, z))ds + g(O, z)9f(E(t, z)) + (0, z)f(E(t, z))

+ fj (t - s, z)E(s, z)ds + g(O, z)E(t, z) + 7(O, z)E(t, z),

where f : I? -- f1? is a nonlinear (not necessarily small) perturbation of the linear mechanism.
This yields the strong form of the equation

?er(t, z) + -IIW(z)(0(z) + g(0, z))E(t, z)
C0
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+ IQ (z) (0 z)E(t, z) + -p(z)§(t - s, z)E(s, z)ds

+ lIQ(z)g(0, z)f(E(t, z)) + f' lIn(z)?§(t - s, z)f(E(s, z))ds

+ 1In(z)g(O, z)df(E(t, z)) - c2E"(t, z) = (t,z), 0 < z < z2. (2.6)

In the physical problem z2 is assumed to be unknown, and it is desirable to estimate it from
given data. Since the existence proof is constructive in the sense that the numerical method

we use to solve this problem (for both forward and inverse problems) follows the theoretical

arguments, it is desirable to convert the problem to a fixed spatial domain, e.g., [0, 1], as

explained in [2]. We then do not need to update the spatial discretization and the basis

functions for different z2, but the same numerical framework can be used throughout the
optimization procedure in the inverse problems.

To this end we first multiply (2.6) by 0, where 0 E H'(0, z2 ) and integrate from 0 to
z2 using integration by parts in the last term in the left. Then we introduce a change of

variable by letting

• h(z) Z1l if 0< z <z1=Zl+(Z-ZI) 1-" ifz1<z<z 2,

i.e., h(z) = z + ( - 1)(z- zl)I[Z1 ,12](z) with ( = . Then h'(z) = 1 + ( - 1)IQ(z) and
i~e. h~) = +((z2--Zl

h'(i) = 1 +( - 1)If(i), where Q = [zl, 1] and we adopt the notation that E, h, €, #, etc., are

the maps E, h, 0, g, etc., after they have been mapped from the domain [0, z 2 ] to the domain

[0, 1]. Using this transformation we obtain

11 + f I(i):1(t - s,1. )(s,.)ds,o(i))+

h'(;E) 60 h'~ M O (0

1'i coh'(i c
-1 1 i()(,.df((,),()+ (c2h,/_,&(t,.),0,)(ý -C O +c E(t,0) ýo(0)

i 1J3 (t, .), I ()), (2.7)
h'(i) CO

where (.,.) is the L 2 (0, 1) inner product. This effectively maps our system to a fixed reference
domain [0, 1] and we use this form to define the weak solution of the problem. We let H =
L2(0,1), V = HR(0, 1) = {¢ E H1 (0, 1)10(1) = 0} leading to the Gelfand triple ([15, 20])
V "-* H "-+ V*. We say that E E L°(0,T;V) with EC L2 (0,T;H), tE L2(0,T;V*), is a
weak solution if it satisfies for every V e V
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(.E, p)vu,v + (yE, ,)+ (/E, p)+ (ja(t _ s, .)E(s, .)ds, )

+(OfS(E), p) + (j a(t - s, .)f(E(s, .))ds, W) + (14 f(E), W)

+(c2h'E', W') + cE(t, O)p(O) = (J(t, .), W)V*,V (2.8)

and

E(O, z) = (D(z), E(O, z) = T(z), (2.9)

where in (2.8) we drop the overtilda on variables and functions for simplification of notation
and for • E [0, 1], we define

a(t,Z) 4 M'(t)
h'(z) Co

hl(• ) co

1 17(2) h'(M E0o •(() (,•)

1 1
h'(z) c0

1 1
11

We note that since > 0 is a piecewise constant function, the inclusion of this term in
h'(z)

a, 7, 7,'7, r, 3 is essentially equivalent to using a modified c0. In developing the theoretical
existence result we can also make the simplifying assumption that Cr = 1 without loss of
generality. (This, of course, is not true for computational efforts.) Our goal is to establish
the existence and uniqueness of weak solutions.

We make the following assumptions:

Al) The functions /37,-y ' E L'(0, 1) with

I/O(z)[ < L1, 1ý(z)l < L2.

A2) The function a is bounded on [0, T] x (0, 1) with

IQ(t, z)I < L3.
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A3) g(0, z) > 0, a(z) > 0. (We note that this assumption implies that -y(z) >_ 0, '/(z) > 0
for every z e [0, 1].)

A4) The nonlinear function f : i -+ if is C', with f(0) = 0, and f'(z) > 0 for all z E Rt.
f is also assumed to be affine at infinity, i.e., there exist constants R, LR and KR such
that for every IxI > R, If(x)l • LRIx + KR.

We proved the following theorem:

Theorem 2.1 Under assumptions A1)-A4) the system (2.8)-(2.9) has a weak solution for
any ( E V, T E H and J e H1 (0,T; V*). The weak solution depends continuously on initial
conditions and the source term, i.e., the mapping (4I, IF, J) -+ (E, E) is continuous from2

V x H x Hl(0,T;V*) to C(0,T;H) x LWeak(0,T;H).

Details of the proof can be found in [3].
The theoretical results are an initial effort in developing a foundation for nonlinear elec-

tromagnetics and the needed computational methods for such. The potential applications of
nonlinear optics with light as an information carrier are widespread and are the basis of op-
tical information technology and the use of optical fibers. They are of increasing importance
with the development of materials (e.g., GaAs, InP, KNbO3) which possess outstanding non-
linear optical and electro-optical properties [11]. Our interests arise from the potential of
using interrogating input pulses in the IR range (terahertz) in imaging and more specifically
in detection algorithms.

Nonlinear optical effects are usually described through nonlinear polarization laws [10]
and many of these laws can be formulated in the framework above where we treat rather
general nonlinearities. These include locally polynomial nonlinearities (e.g., so-called third
order and higher effects [10, 11]) that are bounded as the magnitude of the E field saturates
polarization mechanisms (e.g., the material "freezes" dielectrically at high field values). The
assumption that the nonlinearity is increasing with the magnitude of the E field is again a
realistic one.

We consider full wave propagation (as opposed to the popular paraxial approximate
models [10] found widely in the literature), even here there are some tacit assumptions
that may result in limiting approximations to phenomena that actually occur in nonlinear
materials. Specifically, the one-dimensional model formulated in this section depends on the
tacit assumption that the polarization field P in the dielectric remains parallel to the electric
field B. Even then, the usual Maxwell equation V • D = 0 along with the constitutive law
D = EoCrE + f 1 (P)P need not result in V . B = 0. This is important in deriving the second
order form of Maxwell's equation where the identity V x V x R = V(V. B) - V2E results in
the simple Laplacian only if V .9F = 0 or one assumes this term is negligible as often done in
nonlinear optics ([10] p.54-60). Even with some obvious inadequacies, the model considered
here does facilitate treatment of a number of mechanisms of interest, including Debye and
Lorentz materials that are driven by nonlinear E field inputs, e.g., P + !P = f(E).
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3 Numerical algorithm and simulations

Our models incorporate different linear and nonlinear polarization mechanisms which in-
fluence the propagation characteristics. First we study a linear Debye model [12], given
by

-rP + P = 60(ES - 6,)E, t > 0, (3.10)

and then extend it to a nonlinearly forced Debye and a mechanistically nonlinear Debye
model. Our computational framework is based on a variational formulation of Maxwell's
equations described in the previous section.

Our focus here is on understanding the propagation characteristics of pulses with different
carrier frequencies, and for this purpose we set up a simplified model. However, we note that
this simplified formulation can be readily extended to treat interfaces and the more general
inverse problems. We consider an infinite (in the x and y direction) slab of homogeneous
material of width f with faces parallel to the xy plane. However, here we place an antenna
inside the material, usually in the middle. The input signal is a planar electromagnetic wave
polarized with oscillations in the xz plane only. The electromagnetic field E is reduced to
one nontrivial component, in the x direction, at all points of the slab, and it is homogeneous
in intensity in the x and y directions.

For computational purposes we scale the time variable by a factor of c and polarization
P by a factor of 1/6a, i.e., we let E = E(ct), P = 1/eoP(ct). We express P from (3.10)
and substitute it into the weak formulation of the model. The new equations in the scaled
variables are

(E/t, W) + ((Wca + EdA)E, W) + (A2P, W) - (6dA 2E, W) + (E', ýo') + ,/E, k(0) (0)

+ VrE(v) (P(f) = 7 -7(4, W) (3.11)
(P + AP, (p = (6-dAE, (), (3.12)

where we introduced the notation Ed = Es - 6,, A = ± and 77 = 1 0c. We discretize theCT

problem in the space variable using a first order Galerkin finite element approximation.
We divide the interval [0, f] into N equal subintervals at the points z = jh, j = 0,... N,
where h = e/N, and construct standard piecewise linear splines ¢N(z). The finite dimen-

sional approximating subspaces to V will be taken to be VN = ION, ON'..., ON}. Now we

approximate E(t, z) and P(t, z) in this space as

N

E(t, z) Et z) = e (t) (z), (3.13)
j=0
N

P(t,z) • pN(t,z) = WpN(t)¢(Z). (3.14)
j=0

We choose the space of test functions to be VN also, and thus we find that (3.11)-(3.12) lead
to

"WrM + ((ya + FdA)M + VfsBD) + A2Mp +(K - A2EdM)e=-NJ, (3.15)
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Mý = -AMp + EdAMe (3.16)
eN N'..e)'p=(Np'.'11

where e = p e J (JO,...,JN)T, with J =

(J,, 0), i = 0,...N, and

Mij = (0i, 0j) = j (z)q$j(z)dz,

Kij

(= €j')= j0(z)¢' (z)dz.

Here BD denotes a matrix with BDoo = BDNN = 1, while all other elements of the matrix
are 0. We now employ a second order central difference approximation in the time variable
to solve (3.15). We take

= n+1 - 2en + en-1 en+l - n-1
At2 ' - 2At

and
en+1 + en +•n-1e(tn) = 4n

4

Now the Galerkin approximation (3.15) reduces to a linear equation that can be solved
for e'+1 given e', e'- 1 and pn. We have initial condition e' = 0 and we approximate
el ?A2j 8 (0,z). To obtain pf we solve (3.16) using a Crank-Nicholson method. This
approximation method is overall O(h 2) when At = O(h). We also note that the method is
unconditionally stable.

We remark that our model is well-posed theoretically for various different linear and non-
linear polarization mechanisms. The input pulse has the form A sin3 (wt)X[o,tf](t)J(z - z0),
where A is the amplitude of the signal, and z0 denotes the location where it is generated
inside the material. We use a few (typically 4 to 7) whole periods of this signal, i.e., tf is an
integer multiple of 27r/w. In the first set of experiments we observed the onset and propaga-
tion characteristics of the Brillouin precursors in the case when a linear Debye polarization
mechanism is assumed. We find that in the 1-10 GHz frequency range the peak amplitude
of the transient field is attenuated at a much slower rate in relation to propagation distance
than the amplitude of the carrier frequency (see Figures 2 and 3). Indeed, a closer analysis
of the attenuation rate reveals that while the carrier frequency decays exponentially, the at-
tenuation of the transient is only algebraic, and proportional to approximately x-0 .6 2 in the
1 GHz case, and x-' 59 in the 10 GHz case. This is in accordance with the results reported
in [1] and the theoretical considerations based on asymptotic analysis in [17].

In the 0.1 to 1 THz regime the carrier frequency does not propagate inside the material,
only the precursor enters. The attenuation rate of the amplitude of the leading transient
with respect to propagation length in the 1 THz case is approximately proportional to x 1 '59 .

Next we take a nonlinearly forced Debye polarization model given by

TrP + P = EOEdE + f(E), (3.17)

8
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Figure 2: (left) The electric field recorded at the antenna and at 0.6, 0.75 and 1 m in the material
in the first 50 ns of propagation, 1 GHz example ; (right) Peak of the leading transient and the
carrier frequency versus propagation length.

where f(E) =/3E3 . This is an approximation to a saturation limited nonlinearity required
by our theorem. We implemented the same numerical method outlined above, except that
in this case (3.15)-(3.16) contain nonlinear terms. We used a functional iteration in the
nonlinear version of (3.15) to obtain el, which is then used to update the polarization term p".
Comparison of the nonlinearly forced model (3.17) with the corresponding linear dynamics
is depicted in Figures 4 and 5 for the 10 GHz and 1 THz case, respectively. In these
simulations we have a weak nonlinearity with 0 = -5 x 10-' and the amplitude of the input
signal is small, A = 10. The linear and nonlinear results do not differ substantially in the 10
GHz case (see Figure 4). In that case if , is positive we observed that a nonlinearly forced
polarization dynamics leads to a signal whose main part arrives slightly earlier and is slightly
larger than the corresponding portion of the signal in the linear material. More results and
comparisons can be found in [7].

In a set of parallel numerical experiments we implemented a nonlinear Debye polarization
dynamics given by -rP + P + sP3 = 60(cs - -,,)E, where s is a small parameter. The cubic
nonlinear term is chosen since most biological tissues are not expected to have an axis
of symmetry. However, it must be considered as an approximation to a saturation limited
nonlinear mechanism that can be anticipated for orientational polarization. Large departures
from the linear behavior can be observed even for weak nonlinearities if the amplitude of the
input signal is sufficiently large. In our simulations s = 10-3 and the amplitude A of the
input signal is in the range 1010 to 1012. Figures 6 and 7 show the comparison between the
nonlinear Debye model and the corresponding linear dynamics in the 10 GHz and 1 THz
case, respectively.

In the 10GHz case we find that initially the peak of the transient is attenuated at a
faster rate than in the linear case if the amplitude of the input signal is sufficiently large
(> 5. 10'). As the propagation continues, the attenuation rate seems to approximate that
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Figure 3: (left) The electric field recorded at the antenna and at 0.0033, 0.00833 and 0.0166 m
propagation in the material in the first 2 ns, 10 GHz example; (right) Peak of the leading transient,
loglog plot.
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Figure 4: Comparison of the linear (solid line) and nonlinearly forced (dashed line)
results, 10 GHz example.

of the linear case. Some of these findings (especially the details of the nonlinear models and
corresponding simulations and comparisons with the linear models) are presented in [7].
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Figure 5: Comparison of the linear (solid line) and nonlinearly forced (dashed line)
results, 1 THz example.

4 Models for polymeric materials

As one component in the investigation of the interaction of electromagnetic waves with
viscoelastic materials we further developed our models for large dynamic deformations of a
polymeric rod. These materials exhibit large hysteresis loops between the stress and strain,
which is usually captured by nonlinear constitutive relationships and is thought of as the
manifestation of a 'memory' in the material. In contrast to our earlier efforts based on a
pseudo-phenomenological description of this phenomenon [4, 9] we developed a molecular,
i.e., physics based, model that can incorporate the multiscale aspect of the problem. This
model is based on a nonlinear extension of the linear reptation models of Doi and Edwards
[13] and the work of Johnson and Stacer [14]. We assume that the material consists of
physically-constrained and chemically cross-linked molecules whose motion with respect to
each other constitutes an 'internal dynamics' in the model that contributes to the overall
system response. We showed in [5] and [6] that the earlier models of [4, 9] are special
cases of this formulation if one considers uniform (or a finite number of) internal dynamics.
In the new model we treat a continuum of internal dynamics that are averaged according
to a probability distribution. The resulting system is a probability measure dependent
partial differential equation for which we established well-posedness in [8]. This approach
treats hysteresis as a multiscale phenomenon and is shown to lead to computationally useful
approximations [8].
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Figure 6: Comparison of the linear (solid line) and nonlinear (dashed line) results,
10 GHz example.
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